The Strong Independence Theorem for Automorphism Groups and Congruence Lattices of Arbitrary Lattices
نویسندگان
چکیده
In the book, General Lattice Theory, the first author raised the following problem (Problem II.18): Let L be a nontrivial lattice and let G be a group. Does there exist a lattice K such that K and L have isomorphic congruence lattices and the automorphism group of K is isomorphic to G? The finite case was solved, in the affirmative, by V.A. Baranskĭı and A. Urquhart in 1978, independently. In 1995, the first author and E.T. Schmidt proved a much stronger result, the strong independence of the automorphism group and the congruence lattice in the finite case. In this paper, we provide a full affirmative solution of the above problem. In fact, we prove much stronger results, verifying strong independence for general lattices and also for lattices with zero.
منابع مشابه
The Strong Independence Theorem for Automorphism Groups and Congruence Lattices of Finite Lattices Theorem. Let L C and L a Be Nite Lattices, L C \ L a = F0g. Then There Exists
The Independence Theorem for the congruence lattice and the auto-morphism group of a nite lattice was proved by V. A. Baranski and A. Urquhart. Both proofs utilize the characterization theorem of congruence lattices of nite lattices (as nite distributive lattices) and the characterization theorem of auto-morphism groups of nite lattices (as nite groups). In this paper, we introduce a new, stron...
متن کاملDistributive lattices with strong endomorphism kernel property as direct sums
Unbounded distributive lattices which have strong endomorphism kernel property (SEKP) introduced by Blyth and Silva in [3] were fully characterized in [11] using Priestley duality (see Theorem 2.8}). We shall determine the structure of special elements (which are introduced after Theorem 2.8 under the name strong elements) and show that these lattices can be considered as a direct product of ...
متن کاملOn the Independence Theorem of Related Structures for Modular (arguesian) Lattices
Let D be a finite distributive lattice with more than one element and let G be a finite group. We prove that there exists a modular (arguesian) lattice M such that the congruence lattice of M is isomorphic to D and the automorphism group of M is isomorphic to G.
متن کاملDIRECTLY INDECOMPOSABLE RESIDUATED LATTICES
The aim of this paper is to extend results established by H. Onoand T. Kowalski regarding directly indecomposable commutative residuatedlattices to the non-commutative case. The main theorem states that a residuatedlattice A is directly indecomposable if and only if its Boolean center B(A)is {0, 1}. We also prove that any linearly ordered residuated lattice and anylocal residuated lattice are d...
متن کاملRADICAL OF FILTERS IN RESIDUATED LATTICES
In this paper, the notion of the radical of a filter in residuated lattices is defined and several characterizations of the radical of a filter are given. We show that if F is a positive implicative filter (or obstinate filter), then Rad(F)=F. We proved the extension theorem for radical of filters in residuated lattices. Also, we study the radical of filters in linearly o...
متن کامل